

Evaluation of miR-206 as a Potential Biomarker in a Sample of Iraqi Breast Cancer Patient

¹Noor Esam Abdul Muhsen , ²Ismail Hussein Aziz

^{1,2} Institute of Genetic Engineering and Biotechnology for postgraduate studies, University of Baghdad, Baghdad, Iraq.

Received: July 9, 2024 / Accepted: July 31, 2024 / Published: November 3, 2025

Abstract: Breast cancer (BC) is a heterogeneous malignant disease that begins in the tissues of the breast. It is characterized by the unregulated proliferation of cells, frequently leading to the development of tumors. The illness has a variety of molecular subtypes, including luminal A, luminal B, HER2-positive, and triple-negative, each characterized by unique genetic profiles and clinical outcomes. In this study the expression of miR-206 was examined in a sample of Iraqi female BC patients and its correlation with patients' demographic distribution and disease characteristics, potentially providing insights into BC diagnosis and progression. The study involved 60 female BC patients and 60 healthy controls. Demographic analysis showed most BC cases (70%) occurred in women aged 40-59 years, with 65% having a family history of BC. Invasive ductal carcinoma (IDC) was the most common type (85%), and luminal A the predominant molecular subtype (57%). Stage II and III showed the highest prevalence of BC, 40% and 36%, respectively. Using RT-qPCR with miR-16 as an internal reference, it was found that miR-206 was significantly downregulated (0.35-fold) in BC patients, with no significant differences among molecular subtypes but significantly downregulated in stages II, III, and IV compared to stage I. These findings suggested that miR-206 may play roles in BC development and progression.

Keywords: Breast Cancer, miR-206, RT-qPCR

Corresponding author: (Email: noor.abd2300m@ige.uobaghdad.edu.iq, ismailh.aziz@ige.uobaghdad.edu.iqents)

Introduction

Cancer is the leading cause of morbidity and mortality worldwide. Ferlayet *et al.*, (1) reported that almost 19.3 million people received cancer diagnosis globally in 2020, highlighting the substantial burden of cancer on a global scale. Cancer is an inherited condition marked by irregularities in cellular function, namely in the processes of cell growth and division. It is widely recognized as a major contributor to global mortality.

Breast cancer is the second leading cause of mortality worldwide and is the most detected tumor in females.(2).

Annually, more than 1.5 million new instances of BC are detected, leading to around 460,000 fatalities due to resistance to chemotherapy and the spread of cancer to other parts of the body (3). The incidence of BC is experiencing a significant rise, with 2.3 million new cases reported in 2022. It is projected that there will be a 77% increase in BC patients by 2025 (4). The biological characteristics of BC, including histologic subtype, grade, lymph node status, hormone receptor status, and human epidermal growth factor receptor 2 (HER2) status, are commonly used to detect the disease

early, predict its outcome, and determine the appropriate treatment method (5).

MiRNAs are non-coding RNA molecules that are approximately 22 nucleotides in length. They play crucial roles in the regulation of gene expression following transcription (10). MiRNAs play a role in various biological processes, including cell proliferation, differentiation, apoptosis, and metabolism (11). MicroRNAs possess the capacity to exert either inhibitory or stimulatory control over signaling pathways, hence influencing the formation and advancement of tumors as well as other facets of cancer progression, specifically in the context of BC (9). Dysregulation of miRNA expression has been associated with a range of diseases, such as cancer, cardiovascular disorders, and neurological problems. Because of their capacity to maintain stability in various bodily fluids, they have demonstrated significant promise as biomarkers for the diagnosis and prediction of illnesses (12).

MiR-206 is a microRNA that is particular to muscles and has gained considerable attention in the field of cancer research. It is frequently reduced in many types of cancer, principally acting as a suppressor of tumor growth. MiR-206 specifically targets many oncogenes and pathways that are associated with cell proliferation, migration, and invasion (13). Studies have demonstrated that in cases of BC, it effectively inhibits the growth and spread of tumors by modulating the estrogen receptor- α (ER α) and the MAPK/ERK pathway (14). MiR-206 also contributes to the process of muscle differentiation and regeneration, particularly in malignancies that impact muscular tissues. The levels of its expression are associated with the

prognosis of various cancers, indicating that it has the potential to be used as a biomarker. For this reason, the study aimed to evaluate the expression profile of miRNA-206 in serum sample from Iraqi female BC patients and investigating the correlation of miRNAs expression with some BC clinicopathological features.

Methods

Study Subjects

In this research, Sixty Iraqi females with breast cancer who in attended Al-Andalus Specialist Oncology Hospital in Baghdad and Al Amal hospital, aged 25 to 67 years and sixty were healthy volunteers as a control all the whom had no family history of breast cancer between the first of December 2023 to beginning of March 2024.

Sample Collection

The blood was taken from the patients and healthy group using aseptic techniques ,taked 5 mL of venous blood extracted. The blood samples were collected in gel serum separation tubes and stored at a temperature of 18°C–22°C. Subsequently, the serum was isolated by centrifugation at 3000 rpm for 15 min. The serum, which had been separated, was promptly transferred to TRIzol for RNA extraction and held at a temperature of -20°C until it could be further analyzed

RNA Extraction

RNA was extracted from serum samples according to the protocol of TRIzol™ Reagent. The serum (400 μ l) was mixed with (600 μ l) of TRIzol™ Reagent in each tube, and the lysate was homogenized by pipetting up and down multiple times. For phase separation chloroform was used with a volume of 0.2 ml of and the aqueous was transferred into a new tube, then for the RNA precipitation 0.5 ml of isopropanol was added, the pellet was washed with 0.5 mL of 70%

ethanol, the supernatant was discarded and the pellet was kept only, 50 μ l of Nuclease free water was added and the RNA kept in -70°C until RT-PCR reaction. Using Quantus Fluorometer (Promega, USA) the concentration of RNA in samples was quantified

The reaction setup and Thermal Cycling Protocol:

Two steps RT-qPCR to generate cDNA for the subsequent qPCR reaction.

Table(1): Thermal Cycler Program for 1st reaction.

Step	°C	Min:s	Cycles
Denaturation	70	5:00	1
Hold	4	10:00	
Cool in ice and spin			

With used OT-1Reagent Kits (Reverse Transcription kits), Nuclease Free Water (Synthol, Russia) in SimpliAmp Thermal Cycler(Applied Biosystem,USA) complementary cDNA was synthesized from miRNA reverse

A. First step Reverse Transcription for complimentary DNA synthesis with two reaction :

Every 4 μ l of the RNA sample has been mixed with 1 μ l stem-loop RT primer of the miR206 . The thermal cycle setting as table 1 below :

transcription. Based on manufacturer's instructions, which are displayed in Tables (2) and (3), the Reaction Volume was 7.5 μ l from the 2nd Reaction Mix per tube and 5.0 μ l of the First Reaction Template.

Table (2): Components of cDNA synthesis reaction.

Second reaction	Volume for each 1 Sample(ml)
2.5 Reaction Mixture	10 μ L
Enzyme MMLV-RT	1 μ L
RNA-Primer Template	5 μ L
Nuclease Free Water	4 μ L
Total volume	20 μ L

Table (3): Thermal Cycler Program for 2nd reaction.

Step	°C	Min: S	Cycles
Annealing	25	5:0	1
Extension	42	60:0	
Enzyme inactivation	70	15:20	
Hold	04	10:0	

The QuantusFluorometer was used to evaluate the concentration and quality of the extracted cDNA. Aliquot of 1 μ L of cDNA was combined with 198 μ L of diluted Quantifluor Dye. The solution was thereafter placed in a dark area and incubated for 5 minutes at room temperature. After the incubation period, the concentration of cDNA was measured using the QuantusFluorometer.

B.Second Step Quantitative Estimation of miR-206 and miRNA-16(housekeeping gene) by Gene expression (SYBR Green qPCR)

The miRNA expression levels were quantitatively evaluated using MicqPCR Cycle (Bio Molecular System,Australia) with the SYBR green master mix kit (Synthol/Russia) is listed in table 4.The RT-qPCR conditions are listed in Table (5).

Table (4): Gene expression reaction components.

Master mix components	Volume (μl) for each 1 sample
2.5 Reaction Mixture	10
MgCl ₂	1
Nuclease Free Water	4
Forward primer(10pmol)	1
Reverse primer(10pmol)	1
cDNA	3
Total volume	20

Table (5): The RT-qPCR Program.

Step	°C	Min: Sec	Cycle
Initial Denaturation	95°	5:00	1
Denaturation	95°	0:20	
Annealing	55°	0:20	
Extension	72°	0:20 Acquiring on Green	45

The reagents were rapidly thawed and maintained on ice throughout the experiment. The cycle parameters for qPCR were configured as follows: The process begins with an initial denaturation phase at a temperature of 95°C for 5 min, which is performed only once. This is followed by a series of 45 cycles, each consisting of

denaturation at 95°C for 20 sec, annealing at 55°C for 20 sec, and extension at 72°C for 20 sec. The miRNA expression levels were determined by calculating the fold change, which was normalized to the housekeeping gene miR-16-1, using the formula $2^{-\Delta\Delta CT}$.

Table (6): Primer sequence for miR-206 expression.

Primer Name	Sequencing	Annealing Temp	References
miR-206 RT-primer	GTTGGCTCTGGTGCAGGGTCCGAGGGTATTG CACCAGAGCCAACCCACAC	45°C	Primer design
miR-16-1 RT-primer	GTTGGCTCTGGTGCAGGGTCCGAGGGTATTG CACCAGAGCCAACCGCCAAT		Primer design
MiR-206-F	GGTTTTTTGTGGAATGTAAGGAAGT	55 °C	Primer design
miR-16-F	GGTTTTTTTAGCAGCACGTAAT		Primer design
Universal Reverse	GTGCAGGGTCCGAGGTATT		Primer design

Statistical Analysis

The statistical analysis was performed with GraphPad Prism version 9.2 (GraphPad Software Inc., LaJolla, CA). The student's *t*-test was applied to calculate the significance of the group variance. The Chi-square test was employed to compare the significance between percentages. The data was expressed as the mean \pm SD, and statistical significance was

represented by * $p < 0.05$ and ** $p < 0.01$.

Results

Demographic Distribution

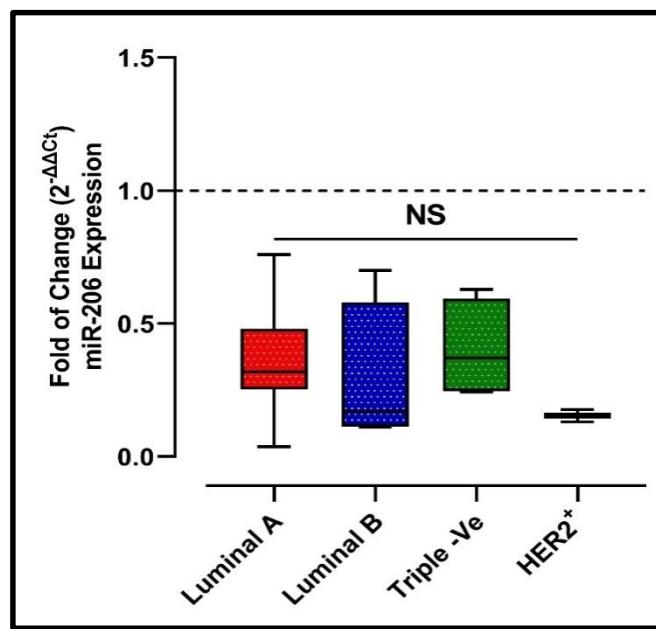
The distribution of BC patients according to family history showed that the number of BC patients with family history of BC was 39 (65%), which is significantly ($p = 0.0201$) different from the BC cases with no previous family history (21, 35%). The

data collected of BC patients showed that the majority of BC patients were significantly ($p<0.0001$) invasive ductal carcinoma (IDC) which represent 85% (51 cases), while only 4 cases (6%) and 5 cases (9%) belonged to invasive lobular carcinoma (ILC) and other types, respectively. Based on molecular subtypes of BC, the highest percentage of BC patients was luminal A which represents 57% (34 cases). Luminal B and triple negative BC patients accounted for 17% (10 cases) and 20% (12 cases), respectively. Finally only 4 cases (6%) were examined as HER2 subtype. The distribution of BC molecular subtypes showed significant ($p<0.0001$) differences among all types since luminal A contributed more than 50% of BC total. The distribution of BC patients depending on stage showed that significant ($p = 0.0117$) differences were observed between the 4 cancer stages. Only one case (3%) was obtained from BC patient in stage I, stage II 24 cases (40%), stage III 22 cases (36%) and 13 cases (21%) for stage IV.

Table (6): The gene expression results shown mean fold change in miR-206 expression values of the control and patient.

Groups	Mean of Folding
Control	44.1856
Patient	11.6162

Correlation between miR-206 Expression and Demographic Parameters

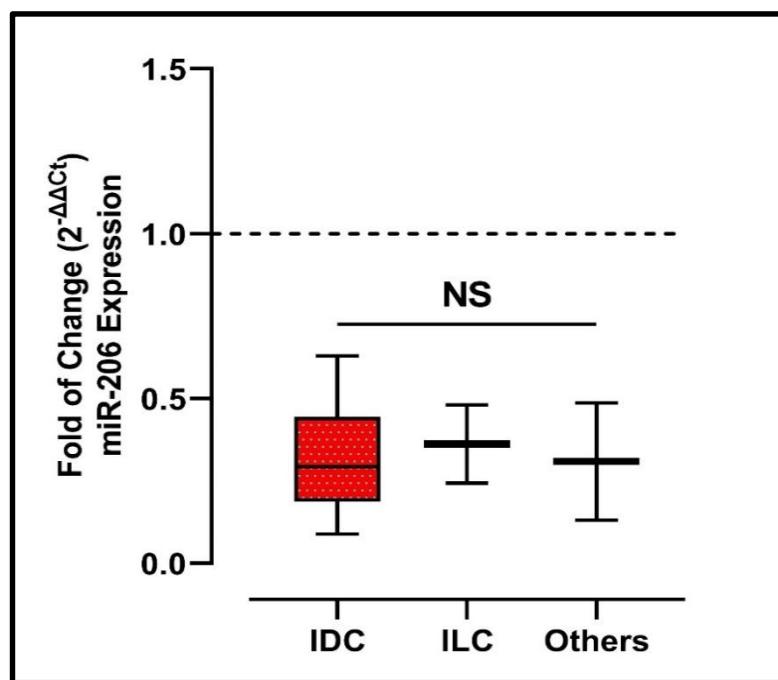

The analysis of miR-206 expression based on BC molecular subtypes showed that there were no significant differences between the

The BC patients were divided into 5 age groups ranging from 20 to >60 . The distribution of BC patients showed significant ($p<0.0001$) differences among the different age levels with higher percentage of cases was detected 35% between 40-49 (21 cases) and 35% between 50-59 (21 cases). Only 3 cases (5%) were in the age range between 20-29. While 7 cases (11.67%) and 8 cases (13.33%) were distributed within the age range between 30-39 and ≥ 60 , respectively.

Relative Expression of Circulating miR-206

The relative expression of miR-206 was measured depending on the relationship between the Ct (Cycle threshold) value of the target gene in patients and the control group, as well as the internal housekeeping reference miR-16(15). Comparing to control group, the expression of miR-206 exhibited a significant ($p<0.0001$) downregulation with 0.35 ± 0.23 -fold decrease (Table. 3).

varied types of BC (Fig. 2). Luminal A, luminal B, triple negative and HER2 were exhibited miR-206 downregulation with relative expression of 0.36 ± 0.2 , 0.29 ± 0.28 , 0.4 ± 0.19 and 0.15 ± 0.032 -fold decrease, respectively.


Figure (2): miR-206 expression in BC patients according to BC molecular subtypes. NS: Non-significant.

Based on stage the expression of miR-206 in stage I of BC patients 1.2-fold of change. While the expression of miR-206 in stages II, III and IV were significantly different from stage I with fold decrease of 0.32 ± 0.19 ($p = 0.0052$), 0.46 ± 0.22 ($p = 0.0213$) and 0.3 ± 0.22 ($p = 0.0039$), respectively (Fig. 3). No

significant differences were observed between stages II, III and IV. No significant differences were recorded between IDC, ILC and other types of BC with respect to miR-206. The relative expression of miR-206 was 0.32 ± 0.18 , 0.36 ± 0.17 and 0.31 ± 0.25 -fold change, respectively (Fig. 4).

Figure (3): miR-206 expression in BC patients according to BC stage. * $p < 0.05$, ** $p < 0.01$.

Figure (4): miR-206 expression in BC patients according to BC type. NS: Non-Significant. IDC: Invasive Ductal Carcinoma, ILC: Invasive Lobular Carcinoma.

Discussion

The statistical analysis performed in this study demonstrated a notable rise in the expression of miR-206.

Breast Cancer is a condition that can impact females of many age groups; however, it is typically identified in women who are 40 years old or older(16). Statistically, the likelihood of acquiring BC escalates notably after reaching the age of 40 and reaches its highest point between the ages of 50 and 60(17). A study involved 7,711 BC Thai women revealed that the higher incidence of BC was at age groups 40 and older(18). Another study involved 1172 Iraqi female with BC showed that peak frequency of age in Iraqi BC patients occurred between 35 – 49 years old with mean age of 51 (19). Iraqi women diagnosed with breast cancer have emphasized the very early age at which the affected patients were diagnosed(20). Among the greatest risk factors for BC is the family history of the illness. Women run a higher chance

of developing breast cancer themselves if they have close blood relatives, a mother, sister, or daughter, who have been diagnosed(21). The correlation between genetic abnormalities and BC susceptibility, specifically in the *BRCA1* and *BRCA2* genes, is the primary reason for this association(22). IDC represent the major type of BC in this study, these findings align with the results reported in a local study conducted by Ibrahim and Nader, which indicated that 96% of the cases in the study were classified as IDC based on histological analysis(23). Same results were obtained by Li et al., (24) in which 72.8% of BC patients were classified as IDC, while 7.6% of the patients were classified as ILC. Analysis from China involved 796,335 BC patients showed that the majority type of BC was IDC (89.3%). ILC represents only 10.7% from all BC patients(25).

Based on molecular subtypes, the results were in agreement with different local and international studies that

exhibited the predominant of luminal A over the other types of BC. An Iraqi study conducted 920 BC female patients who attended Al-Hussein Cancer Center in Karbala province of Iraq, showed that luminal A exhibited the highest percentage 53.69%(26). Another study enrolled 686 Iraqi BC patients revealed that the main identified phenotype of BC was luminal A (45%), followed by triple negative (15.6%), luminal B (14%) and HER2 (10.3%)(27). The percentages of BC subtype were almost similar to the percentages obtained in this study. In a recent study conducted by Abbas, in Iraq, the findings regarding BC molecular subtypes revealed that the majority of tumors (58%) belonged to the luminal A subtype. Additionally, 20% of patients had luminal B subtype, 6% had triple negative subtype, and only 16% had the HER2 molecular subtype(28). Mutar et al., (29) were also obtain close proportions for luminal A (42.2%), luminal B (14.6%), triple negative (15.6%) and HER2 (11.2%). Breast Cancer staging is crucial for treatment selection and prognosis. Most diagnoses occur at stage II, followed by stages III and IV, with few at stage I, highlighting the need for earlier detection(30). Diagnosis timing varies globally: Japanese women were often diagnosed at stage I (56.1%), compared to black American (37%) and white non-Hispanic women (50.8%)(31). In Iraq, stage II was most common (47.5%), followed by stage III (31.9%), stage I (12%), and stage IV (8.6%)(19). Iraqi women tend to be diagnosed at later stages, emphasizing the importance of improved early screening and detection efforts in the country(32).

Micro-RNA206 is a muscle-specific microRNA that has gained significant attention for its emerging roles in breast cancer pathogenesis. While initially

recognized for its functions in skeletal and cardiac muscle development, recent studies have uncovered its dysregulation and potential tumor-suppressive effects in various cancers, including BC(33). The expression of miR-206 is often reduced in BC relative to normal breast tissue, indicating its possible function as a tumor suppressor. Decreased levels of miR-206 have been linked to more aggressive characteristics of BC, including heightened cell proliferation, migration, invasion, and metastasis. Functionally, miR-206 inhibits the growth of tumors by specifically binding to and suppressing the activity of multiple cancer-causing genes and cellular communication pathways that contribute to the advancement of BC(34). Micro-RNA206, which is well recognized for its involvement in the formation of skeletal muscle, has been discovered to be significantly decreased in BC samples compared to nearby healthy tissue. Ge et al., (35) revealed the downregulation of miR-206 and upregulation of 6-Phosphofructo-2-kinase (PFKFB3) in BC patients. Overexpressing miR-206 hindered the formation of fructose-2,6-bisphosphate (F2,6BP), decreased lactate generation, and resulted in lower cell proliferation and migration in breast cancer cells.

By using a comprehensive data analysis, the consistent miR-206 downregulation was detected in all main molecular subtypes of BC, highlighting the probable vital role of miR-206 in the formation of BC. Luminal A and B are two subtypes that bear the presence of ER positive and miR-206 is lower significantly in both Luminal A and B(36). This downregulation is particularly important as miR-206 directly targets ESR1, the gene that encodes ER α . Thus, reduced levels of miR-206 could permissively allow for

higher ER α expression, fueling the development of estrogen-dependent tumors(37). The expression pattern of miR-206 in BC has a unique profile that varies depending on the stage of the disease. It was worth mentioning that miR-206 was noticeably reduced in later stages (II, III, and IV) of BC. However, its expression in stage I BC remains rather stable when compared to healthy breast tissue(38). The reason for stabilizing expression of miR-206 in stage I could be attributed to the small size of tumor (≤ 2 cm) that hasn't spread beyond the breast, miR-206 levels are comparable to normal tissue. This suggested that in early, localized breast cancer, the regulatory mechanisms governing miR-206 expression are still intact(39). However, as the disease advances to stages II and III, and/or IV characterized by larger tumors and lymph node involvement, miR-206 levels drop markedly. Finally, the decrease in expression of miR-206 is a characteristic feature observed in all main forms of BC, regardless of their histological source. In cases of IDC, which is the most prevalent kind, there is a correlation between a decrease in miR-206 and an increase in tumor size and grade. Similarly, low levels of miR-206 are linked to increased invasiveness in ILC. Even in less common kinds of carcinomas such as medullary and mucinous carcinomas, the expression of miR-206 is reduced(40).

Conclusions

Based on the study results, miR-206 shows significant downregulation in BC patients compared to healthy controls. While no significant differences were observed among molecular subtypes or histological types, miR-206 expression varied significantly across cancer stages. Stage I showed upregulation, while stages II-IV exhibited downregulation compared to stage I.

These findings suggest miR-206 could be a potential biomarker for breast cancer detection and staging.

References

1. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D. M.; Piñeros, M.; Znaor, A. and Bray, F. (2021). Cancer statistics for the year 2020: An overview. *International journal of cancer*, 149(4), 778-789..
2. Sahan, K. A.; Aziz, I. H.; Dawood, S. N. and Al Qazzaz, H. (2022). The role of resistin gene polymorphism in Iraqi breast cancer patients. *Biomedicine*, 42(6), 1296-1300.
3. DeSantis, C. E.; Ma, J.; Gaudet, M. M.; Newman, L. A.; Miller, K. D.; Goding Sauer, A., *et al.* (2019). Breast cancer statistics, 2019. *CA: a cancer journal for clinicians*, 69(6), 438-451.
4. Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M., *et al.* (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. *The Breast*, 66, 15-23.
5. Li, Y.; Yang, D.; Yin, X.; Zhang, X.; Huang, J.; Wu, Y., *et al.* (2020). Clinicopathological characteristics and breast cancer-specific survival of patients with single hormone receptor-positive breast cancer. *JAMA network open*, 3(1), e1918160-e1918160.
6. Taher, H.M. and I.H. Aziz, *The Relationship between MicroRNA 195-3p Expression and Breast Cancer Females*. *Biomedical Biotechnology Research Journal*, 2023. 7(3): p. 420-424.
7. Hamam, R.; Hamam, D.; Alsaleh, K. A.; Kassem, M.; Zaher, W.; Alfayez, M., *et al* (2017). Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. *Cell death & disease*, 8(9), e3045-e3045.
8. AL-saqabi, A. N. and Jaber, I. H. A. M. M. (2022). Demographic study of age, family history, stages, grade and expression of miRNA-195-5p in sample of Iraqi breast cancer patients. *Iraqi journal of biotechnology*, 21(2).
9. Dexheimer, P. J. and Cochella, L. (2020). MicroRNAs: from mechanism to organism. *Frontiers in cell and developmental biology*, 8, 409.
10. Catalanotto, C.; Cogoni, C. and Zardo, G. (2016). MicroRNA in control of gene expression: an overview of nuclear functions. *International journal of molecular sciences*, 17(10), 1712..

11. Dai, C.; Xie, Y.; Zhuang, X. and Yuan, Z. (2018). MiR-206 inhibits epithelial ovarian cancer cells growth and invasion via blocking c-Met/AKT/mTOR signaling pathway. *Biomedicine & Pharmacotherapy*, 104, 763-770.
12. Zhou, Y.; Wang, M.; Tong, Y.; Liu, X.; Zhang, L.; Dong, D., *et al.* (2019). miR-206 promotes cancer progression by targeting full-length neurokinin-1 receptor in breast cancer. *Technology in Cancer Research & Treatment*, 18, 1533033819875168.
13. Schmittgen, T. D. and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. *Nature protocols*, 3(6), 1101-1108.
14. Coughlin, S. S. (2019). Epidemiology of breast cancer in women. *Breast Cancer Metastasis and Drug Resistance: Challenges and Progress*, 9-29.
15. Akram, M.; Iqbal, M.; Daniyal, M. and Khan, A. U. (2017). Awareness and current knowledge of breast cancer. *Biological research*, 50, 1-23.
16. Kotepui, M. and Chupeerach, C. (2013). Age distribution of breast cancer from a Thailand population-based cancer registry. *Asian Pacific Journal of Cancer Prevention*, 14(6), 3815-3817..
17. Alwan, N. A.; Tawfeeq, F. N. and Mallah, N. A. (2019). Demographic and clinical profiles of female patients diagnosed with breast cancer in Iraq. *Journal of Contemporary Medical Sciences*, 5(1).
18. Alwan, N. A. (2016). Breast cancer among Iraqi women: Preliminary findings from a regional comparative Breast Cancer Research Project. *Journal of global oncology*, 2(5), 255.
19. Brewer, H. R.; Jones, M. E.; Schoemaker, M. J.; Ashworth, A. and Swerdlow, A. J. (2017). Family history and risk of breast cancer: an analysis accounting for family structure. *Breast cancer research and treatment*, 165, 193-200..
20. Mehrgou, A. and Akouchekian, M. (2016). The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. *Medical journal of the Islamic Republic of Iran*, 30, 369..
21. Ibrahim, A. K. and Nader, M. I. THE ROLE OF MICRORNA-10B GENE EXPRESSION, SERUM INTERLEUKIN-18 AND CA15. 3 LEVEL IN BREAST CANCER METASTASIS IN IRAQI FEMALES.
22. Li, C. I.; Anderson, B. O.; Daling, J. R. and Moe, R. E. (2003). Trends in incidence rates of invasive lobular and ductal breast carcinoma. *Jama*, 289(11), 1421-1424.
23. Chen, Z.; Yang, J.; Li, S.; Lv, M.; Shen, Y.; Wang, B., *et al.* (2017). Invasive lobular carcinoma of the breast: a special histological type compared with invasive ductal carcinoma. *PloS one*, 12(9), e0182397.
24. Mjali, A.; Obaid, M. M.; Al-Shammari, H. H. J.; Alwakeel, A. F.; Sedeeq, A. O.; Abbas, N. T. and Mula-Hussain, L. (2022). Histopathological Patterns and Luminal Subtypes among Breast Cancer Patients in the Middle Euphrates Region of Iraq. *Asian Pacific Journal of Cancer Biology*, 7(3), 233-238.
25. Alwan, N. A.; Tawfeeq, F. N. and Muallah, F. H. (2017). Breast cancer subtypes among Iraqi patients: identified by their Er, Pr and Her2 Status. *Journal of the Faculty of Medicine Baghdad*, 59(4), 303-307.
26. Ibrahim, A. K. and Nader, M. I. The role of microrna-10b gene expression, serum interleukin-18 and ca15. 3 level in breast cancer metastasis in iraqi females.
27. Mutar, M. T.; Goyani, M. S.; Had, A. M. and Mahmood, A. S. (2019). Pattern of presentation of patients with breast cancer in Iraq in 2018: A cross-sectional study. *Journal of global oncology*, 5, 1-6.
28. Saadatmand, S.; Bretveld, R.; Siesling, S. and Tilanus-Linthorst, M. M. (2015). Influence of tumour stage at breast cancer detection on survival in modern times: population based study in 173 797 patients. *Bmj*, 351..
29. Iqbal, J.; Ginsburg, O.; Rochon, P. A.; Sun, P. and Narod, S. A. (2015). Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. *Jama*, 313(2), 165-173.
30. Al-Hashimi, M. M. (2021). Trends in breast cancer incidence in Iraq during the period 2000-2019. *Asian Pacific journal of cancer prevention: APJCP*, 22(12), 3889.
31. Ma, G.; Wang, Y.; Li, Y.; Cui, L.; Zhao, Y.; Zhao, B. and Li, K. (2015). MiR-206, a key modulator of skeletal muscle development and disease. *International journal of biological sciences*, 11(3), 345.
32. Lin, Z. J.; Ming, J.; Yang, L.; Du, J. Z.; Wang, N. and Luo, H. J. (2016). Mechanism of regulatory effect of microRNA-206 on connexin 43 in distant

metastasis of breast cancer. Chinese Medical Journal, 129(04), 424-434.

33. Ge, X.; Lyu, P.; Cao, Z.; Li, J.; Guo, G.; Xia, W. and Gu, Y. (2015). Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochemical and biophysical research communications, 463(4), 1115-1121.

34. Seifi-Alan, M.; Shamsi, R.; Behmanesh, A.; Mirfakhraie, R.; Omrani, M. D. and Ghafoori-Fard, S. (2018). MIR-206 target prediction in breast cancer subtypes by bioinformatics tools. International Journal of Cancer Management, 11(7).

35. Howard, E. W. and Yang, X. (2018). microRNA regulation in estrogen receptor-positive breast cancer and endocrine therapy. Biological procedures online, 20, 1-19..

36. Liu, Y.; Gong, W.; Panoutsopoulou, K.; Singer-Cornelius, T.; Augustin, K.; Bronger, H., *et al.* (2023). Association of high miR-27a, miR-206, and miR-214 expression with poor patient prognosis and increased chemoresistance in triple-negative breast cancer. American Journal of Cancer Research, 13(6), 2471.

37. Quan, Y.; Huang, X. and Quan, X. (2018). Expression of miRNA-206 and miRNA-145 in breast cancer and correlation with prognosis. Oncology Letters, 16(5), 6638-6642.

38. Fatima, A.; Nasim, N.; Haider, M. F.; Rahman, M. A.; Mall, J.; Saifi, M. S. and Akhtar, J. (2024). A comprehensive review on nanocarriers as a targeted delivery system for the treatment of breast cancer. Intelligent Pharmacy.